-->

Pembagian bahan bakar dan pembakarannya



BAHAN BAKAR & PEMBAKARAN

1.      BAHAN BAKAR CAIR
Bahan bakar cair seperti minyak tungku/ furnace oil dan LSHS (low sulphur heavy stock) terutama digunakan dalam penggunaan industri. Berbagai sifat bahan bakar cair diberikan dibawah ini:
-          Densitas
Densitas didefinisikan sebagai perbandingan massa bahan bakar terhadap volum bahan bakar
pada suhu acuan 15°C. Densitas diukur dengan suatu alat yang disebut hydrometer. Pengetahuan mengenai densitas ini berguna untuk penghitungan kuantitatif dan pengkajian kualitas penyalaan. Satuan densitas adalah kg/m3.
-          Specific gravity
Didefinisikan sebagai perbandingan berat dari sejumlah volum minyak bakar terhadap berat air untuk volum yang sama pada suhu tertentu. Densitas bahan bakar, relatif terhadap air, disebut specific gravity. Specific gravity air ditentukan sama dengan 1. Karena specific gravity adalah perbandingan, maka tidak memiliki satuan. Pengukuran specific gravity biasanya dilakukan dengan hydrometer. Specific gravity digunakan dalam penghitungan yang melibatkan berat dan volum.
-          Viskositas
Viskositas suatu fluida merupakan ukuran resistansi bahan terhadap aliran. Viskositas tergantung pada suhu dan berkurang dengan naiknya suhu. Viskositas diukur dengan Stokes / Centistokes. Kadang-kadang viskositas juga diukur dalam Engler, Saybolt atau Redwood. Tiap jenis minyak bakar memiliki hubungan suhu – viskositas tersendiri. Pengukuran viskositas dilakukan dengan suatu alat yang disebut Viskometer. Viskositas merupakan sifat yang sangat penting dalam penyimpanan dan penggunaan bahan bakar minyak. Viskositas mempengaruhi derajat pemanasan awal yang diperlukan untuk handling, penyimpanan dan atomisasi yang memuaskan. Jika minyak terlalu kental,maka akan menyulitkan dalam pemompaan, sulit untuk menyalakan burner, dan sulit dialirkan.
-          Titik Nyala
Titik nyala suatu bahan bakar adalah suhu terendah dimana bahan bakar dapat dipanaskan sehingga uap mengeluarkan nyala sebentar bila dilewatkan suatu nyala api. Titik nyala untuk minyak tungku/ furnace oil adalah 66 0C.
-          Titik Tuang
Titik tuang suatu bahan bakar adalah suhu terendah dimana bahan bakar akan tertuang atau mengalir bila didinginkan dibawah kondisi yang sudah ditentukan. Ini merupakan indikasi yang sangat kasar untuk suhu terendah dimana bahan bakar minyak siap untuk dipompakan.
-          Panas Jenis
Panas jenis menentukan berapa banyak steam atau energi listrik yang digunakan untuk memanaskan minyak ke suhu yang dikehendaki. Minyak ringan memiliki panas jenis yang rendah, sedangkan minyak yang lebih berat memiliki panas jenis yang lebih tinggi.
-          Nilai Kalor
Nilai kalor merupakan ukuran panas atau energi yang dihasilkan., dan diukur sebagai nilai kalor kotor/ gross calorific value atau nilai kalor netto/ nett calorific value. Perbedaannya ditentukan oleh panas laten kondensasi dari uap air yang dihasilkan selama proses pembakaran. Nilai kalor kotor/. gross calorific value (GCV) mengasumsikan seluruh uap
yang dihasilkan selama proses pembakaran sepenuhnya terembunkan/terkondensasikan. Nilai kalor netto (NCV) mengasumsikan air yang keluar dengan produk pengembunan tidak seluruhnya terembunkan.

-          Sulfur
Jumlah sulfur dalam bahan bakar minyak sangat tergantung pada sumber minyak mentah dan pada proses penyulingannya. Kandungan normal sulfur untuk residu bahan bakar minyak (minyak furnace) berada pada 2 - 4 %.  Kerugian utama dari adanya sulfur adalah resiko korosi oleh asam sulfat yang terbentuk selama dan sesudah pembakaran, dan pengembunan di cerobong asap, pemanas awal udara dan economizer.
-          Kadar Abu
Kadar abu erat kaitannya dengan bahan inorganik atau garam dalam bahan bakar minyak. Kadar abu pada distilat bahan bakar diabaikan. Residu bahan bakar memiliki kadar abu yang tinggi. Garam-garam tersebut mungkin dalam bentuk senyawa sodium, vanadium, kalsium, magnesium, silikon, besi, alumunium, nikel, dll. Umumnya, kadar abu berada pada kisaran 0,03 – 0,07 %. Abu yang berlebihan dalam bahan bakar cair dapat menyebabkan pengendapan kotoran pada peralatan pembakaran. Abu memiliki pengaruh erosi pada ujung burner, menyebabkan kerusakan pada refraktori pada suhu tinggi dapat meningkatkan korosi suhu tinggi dan penyumbatan peralatan.
-          Residu Karbon
Residu karbon memberikan kecenderungan pengendapan residu padat karbon pada permukaan panas, seperti burner atau injeksi nosel, bila kandungan yang mudah menguapnya menguap. Residu minyak mengandung residu karbon 1 persen atau lebih.
-          Kadar Air
Kadar air minyak tungku/furnace pada saat pemasokan umumnya sangat rendah sebab produk disuling dalam kondisi panas. Batas maksimum 1% ditentukan sebagai standar. Air dapat berada dalam bentuk bebas atau emulsi dan dapat menyebabkan kerusakan dibagian dalam permukaan tungku selama pembakaran terutama jika mengandung garam terlarut. Air juga dapat menyebabkan percikan nyala api di ujung burner, yang dapat mematikan nyala api, menurunkan suhu nyala api atau memperlama penyalaan.

2.      BAHAN BAKAR PADAT (BATUBARA)
2.1. Klasifikasi Batubara
Batubara diklasifikasikan menjadi tiga jenis utama yakni antracit, bituminous, dan lignit, meskipun tidak jelas pembatasan diantaranya. Pengelompokannya lebih lanjut adalah semiantracit, semi-bituminous, dan sub-bituminous. Antracit merupakan batubara tertua jika dilihat dari sudut pandang geologi, yang merupakan batubara keras, tersusun dari komponen utama karbon dengan sedikit kandungan bahan yang mudah menguap dan hampir tidak berkadar air. Lignit merupakan batubara termuda dilihat dari pandangan geologi. Batubara ini merupakan batubara lunak yang tersusun terutama dari bahan yang mudah menguap dan kandungan air dengan kadar fixed carbon yang rendah. Fixed carbon merupakan karbon dalam keadaan bebas, tidak bergabung dengan elemen lain. Bahan yang mudah menguap merupakan bahan batubara yang mudah terbakar yang menguap apabila batubara dipanaskan. Sifat-sifat batubara secara luas dik lasifikasikan kedalam sifat fisik dan sifat kimia. Sifat fisik batubara termasuk nilai panas, kadar air, bahan mudah menguap dan abu. Sifat kimia batubara tergantung dari kandungan berbagai bahan kimia seperti karbon, hidrogen, oksigen, dan sulfur. Nilai kalor batubara beraneka ragam dari tambang batubara yang satu ke yang lainnya.

2.2. Analisis batubara
Terdapat dua metode untuk menganalisis batubara: analisis ultimate dan analisis proximate. Analisis ultimate menganalisis seluruh elemen komponen batubara, padat atau gas dan analisis proximate meganalisis hanya fixed carbon, bahan yang mudah menguap, kadar air dan persen abu. Analisis ultimate harus dilakukan oleh laboratorium dengan peralatan yang lengkap oleh ahli kimia yang trampil, sedangkan analisis proximate dapat dilakukan dengan peralatan yang sederhana.  Analisis proximate menunjukan persen berat dari fixed carbon, bahan mudah menguap, abu, dan kadar air dalam batubara. Jumlah fixed carbon dan bahan yang mudah menguap secara langsung turut andil terhadap nilai panas batubara. Fixed carbon bertindak sebagai pembangkit utama panas selama pembakaran. Kandungan bahan yang mudah menguap yang tinggi menunjukan mudahnya penyalaan bahan bakar.

2.3. Penyimpanan, handling dan persiapan batubara
Ketidaktentuan dalam ketersediaan dan pengangkutan bahan bakar mengharuskan dilakukannya penyimpanan dan penanganan untuk kebutuhan berikutnya. Kesulitan yang ada pada penyimpanan batubara adalah diperlukannya bangunan gudang penyimpanan, adanya
hambatan masalah tempat, penuruan kualitas dan potensi terjadinya kebakaran. Kerugiankerugian kecil lainnya adalah oksidasi, angin dan kehilangan karpet. Oksidasi 1% batubara memiliki efek yang sama dengan kandunag abu 1% dalam batubara. Kehilangan karena angin mencapai 0,5 – 1,0 % dari kerugian total. Penyimpanan batubara yang baik akan meminimalkan kehilangan karpet dan kerugian terjadinya pembakaran mendadak. Pembentukan “karpet lunak”, dari batubara halus dan tanah, menyebabkan kehilangan karpet. Jika suhu naik secara perlahan dalam tumpukan batubara, maka dapat terjadi oksidasi yang akan menyebabkan pembakaran yang mendadak dari batubara yang disimpan. Kehilangan karpet dapat dikurangi dengan cara:
1. Mengeraskan permukaan tanah untuk penyimpanan batubara
2. Membuat tempat penyimpanan standar yang terbuat dari beton dan bata

Di Industri, batubara di-handling secara manual maupun dengan conveyor. Pada saat handling batubara harus diusahakan supaya sesedikit mungkin batubara yang hancur membentuk partikel kecil dan sesedikit mungkin partikel kecil yang tercecer. Persiapan batubara sebelum pengumpanan ke boiler merupakan tahap penting untuk mendapatkan pembakaran yang baik. Bongkahan batubara yang besar dan tidak beraturan dapat menyebabkan permasalahan sebagai berikut:
§ Kondisi pembakaran yang buruk dan suhu tungku yang tidak mencukupi
§ Udara berlebih yang terlalu banyak mengakibatkan kerugian cerobong yang tinggi
§ Meningkatnya bahan yang tidak terbakar dalam abu
§ Rendahnya efisiensi termal

3.      Bahan Bakar Gas
Bahan bakar gas merupakan bahan bakar yang sangat memuaskan sebab hanya memerlukan sedikit handling dan sistim burner nya sangat sederhana dan hampir bebas perawatan. Gas dikirimkan melalui jaringan pipa distribusi sehingga cocok untuk wilayah yang berpopulasi tinggi atau padat industri. Walau begitu, banyak pemakai perorangan yang besar memiliki penyimpan gas, bahkan beberapa diantara mereka memproduksi gasnya sendiri.
Berikut adalah daftar jenis-jenis bahan bakar gas:
§ Bahan bakar yang secara alami didapatkan dari alam:
- Gas alam
- Metan dari penambangan batubara
§ Bahan bakar gas yang terbuat dari bahan bakar padat
- Gas yang terbentuk dari batubara
- Gas yang terbentuk dari limbah dan biomasa
- Dari proses industri lainnya (gas blast furnace)
§ Gas yang terbuat dari minyak bumi
- Gas Petroleum cair (LPG)
- Gas hasil penyulingan
- Gas dari gasifikasi minyak
§ Gas-gas dari proses fermentasi
Bahan bakar bentuk gas yang biasa digunakan adalah gas petroleum cair (LPG), gas alam, gas hasil produksi, gas blast furnace, gas dari pembuatan kokas, dll. Nilai panas bahan bakar gas dinyatakan dalam Kilokalori per normal meter kubik (kKal/Nm3) ditentukan pada suhu normal (20 0C) dan tekanan normal (760 mm Hg). Karena hampir semua peralatan pembakaran gas tidak dapat menggunakan kadungan panas dari uap air, maka perhatian terhadap nilai kalor kotor (GCV) menjadi kurang. Bahan bakar harus dibandingkan berdasarkan nilai kalor netto (NCV). Hal ini benar terutama untuk gas alam, dimana kadungan hidrogen akan meningkat tinggi karena adanya reaksi pembentukan air selama pembakaran.

3.1.LPG
LPG terdiri dari campuran utama propan dan Butan dengan sedikit persentase hidrokarbon tidak jenuh (propilen dan butilene) dan beberapa fraksi C 2 yang lebih ringan dan C5 yang lebih berat. Senyawa yang terdapat dalam LPG adalah propan (C3H8), Propilen (C3H6),normal dan iso-butan (C4H10) dan Butilen (C4H8). LPG merupakan campuran dari hidrokarbon tersebut yang berbentuk gas pada tekanan atmosfir, namun dapat diembunkan menjadi bentuk cair pada suhu normal, dengan tekanan yang cukup besar. Walaupun digunakan sebagai gas, namun untuk kenyamanan dan kemudahannya, disimpan dan ditransport dalam bentuk cair dengan tekanan tertentu. LPG cair, jika menguap membentuk gas dengan volum sekitar 250 kali. Uap LPG lebih berat dari udara: butan beratnya sekitar dua kali berat udara dan propan sekitar satu setengah kali berat udara. Sehingga, uap dapat mengalir didekat permukaan tanah dan turun hingga ke tingkat yang paling rendah dari lingkungan dan dapat terbakar pada jarak tertentu dari sumber kebocoran. Pada udara yang tenang, uap akan tersebar secara perlahan. Lolosnya gas cair walaupun dalam jumlah sedikit, dapat meningkatkan campuran perbandingan volum uap/udara sehingga dapat menyebabkan bahaya. Untuk membantu pendeteksian kebocoran ke atmosfir, LPG biasanya ditambah bahan yang berbau. Harus tersedia ventilasi yang memadai didekat permukaan tanah pada tempat penyimpanan LPG.

3.2.Gas alam
Metan merupakan kandungan utama gas alam yang mencapai jumlah sekitar 95% dari volum total. Komponen lainnya adalah: Etan, Propan, Pentan, Nitrogen, Karbon Dioksida, dan gasgas lainnya dalam jumlah kecil. Sulfur dalam jumlah yang sangat sedikit juga ada. Karena metan merupakan komponen terbesar dari gas alam, biasanya sifat metan digunakan untuk membandingkan sifat-sifat gas alam terhadap bahan bakar lainnya. Gas alam merupakan bahan bakar dengan nilai kalor tinggi yang tidak memerlukan fasilitas penyimpanan. Gas ini bercampur dengan udara dan tidak menghasilkan asap atau jelaga. Gas
ini tidak juga mengandung sulfur, lebih ringan dari udara dan menyebar ke udara dengan mudahnya jika terjadi kebocoran. Perbandingan kadar karbon dalam minyak bakar,

4.     EVALUASI KINERJA BAHAN BAKAR
4.1.Proses pembakaran
Pembakaran merupakan oksidasi cepat bahan bakar disertai dengan produksi panas, atau panas dan cahaya. Pembakaran sempurna bahan bakar terjadi hanya jika ada pasokan oksigen yang cukup. Oksigen (O2) merupakan salah satu elemen bumi paling umum yang jumlahnya mencapai 20.9% dari udara. Bahan bakar padat atau cair harus diubah ke bentuk gas sebelum dibakar. Biasanya diperlukan panas untuk mengubah cairan atau padatan menjadi gas. Bahan bakar gas akan terbakar pada keadaan normal jika terdapat udara yang cukup. Hampir 79% udara (tanpa adanya oksigen) merupakan nitrogen, dan sisanya merupakan elemen lainnya. Nitrogen dianggap sebagai pengencer yang menurunkan suhu yang harus ada untuk mencapai oksigen yang dibutuhkan untuk pembakaran. bahan bakar dan mengencerkan gas buang. Nitrogen juga mengurangi transfer panas pada permukaan alat penukar panas, juga meningkatkan volum hasil samping pembakaran, yang juga harus dialirkan melalui alat penukar panas sampai ke cerobong. Nitrogen ini juga dapat bergabung dengan oksigen (terutama pada suhu nyala yang tinggi) untuk menghasilkan oksida nitrogen (NOx), yang merupakan pencemar beracun.

4.2.Pembakaran Tiga T
Tujuan dari pembakaran yang baik adalah melepaskan seluruh panas yang terdapat dalam bahan bakar. Hal ini dilakukan dengan pengontrolan “tiga T” pembakaran yaitu (1) Temperature/ suhu yang cukup tinggi untuk menyalakan dan menjaga penyalaan bahan bakar, (2) Turbulence/ Turbulensi atau pencampuran oksigen dan bahan bakar yang baik, dan
(3) Time/ Waktu yang cukup untuk pembakaran yang sempurna. Bahan bakar yang umum digunakan seperti gas alam dan propan biasanya terdiri dari karbon dan hidrogen. Uap air merupakan produk samping pembakaran hidrogen, yang dapat mengambil panas dari gas buang, yang mungkin dapat digunakan untuk transfer panas lebih lanjut. Gas alam mengandung lebih banyak hidrogen dan lebih sedikit karbon per kg daripada bahan bakar minyak, sehingga akan memproduksi lebih banyak uap air. Sebagai akibatnya, akan lebih banyak panas yang terbawa pada pembuangan saat membakar gas alam.

5.      SISTIM DRAFT
Fungsi draft dalam sistim pembakaran adalah untuk membuang produk pembakaran, yaitu gas buang, ke atmosfir. Draft dapat diklasifikasikan menjadi dua jenis yaitu Natural draft dan Mechanical draft.
5.1.Natural draft
Natural draft merupakan draft yang dihasilkan oleh cerobong. Hal ini diakibatkan oleh perbedaan berat antara kolom gas panas dibagian dalam cerobong dan kolom udara luar dengan berat dan luas permukaan yang sama. Karena lebih ringan dari udara luar, gas buang cerobong cenderung naik, dan udara luar yang lebih berat mengalir melalui terowongan abu memasuki ruangan menggantikan tempat gas buang yang naik. Draft biasanya dikontrol oleh damper yang dioperasikan secara manual yang menghubungkan boiler dengan cerobong. Tidak digunakan fan atau blower pada sistim ini. Gas hasil pembakaran dibuang pada ketinggian tertentu sehingga tidak mengganggu masyarakat sekitar.

5.2.Mechanical draft
Merupakan draft buatan yang dihasilkan oleh fan. Tiga jenis dasar draft yang digunakan adalah:
§ Balanced draft: Fan (blower) forced-draft (F-D) mendorong udara menuju tungku dan sebuah fan induksi draft (I-D) membuang gas ke cerobong, sehingga menyediakan draft untuk membuang gas dari boiler. Tekanan dijaga antara 0,05 hingga 0,10 inci air dibawah tekanan atmosfir pada boiler dan sedikit positif untuk memanaskan ulang dan pada perlakuan panas tungku.
§ Induced draft: Fan induksi draft menarik draft yang cukup untuk mengalir menuju tungku, sehingga hasil pembakaran dapat terbuang ke atmosfir. Tekana udara tungku dijaga pada tekanan sedikit negatif dibawah tekanan atmosfir sehingga udara pembakaran mengalir melalui sistim.
§ Forced draft: Sistim forced draft menggunakan sebuah fan untuk mengalirkan udara ke tungku, memaksa hasil pembakaran mengalir melalui unit dan kemudian naik ke cerobong.

6.     PELUANG EFISIENSI ENERGI
6.1    Pemanasan awal Minyak Bakar
Viskositas minyak bakar dan LSHS (Low Sulphur Heavy Stock) meningkat dengan berkurangnya suhu, yang dapat menyulitkan pemompaan minyak. Pada suhu ambien yang rendah (dibawah suhu 25 0C), minyak bakar tidak dapat dipompa dengan mudah. Untuk mengcegah terjadinya hal ini, dilakukan pemanasan awal minyak bakar dengan dua cara:
§ Memanaskan seluruh tangki. Dalam pemanasan dalam jumlah besar (bulk heating) ini,
kumparan steam ditempatkan dibagian bawah tangki, yang keseluruhannya diisolasi;
§ Minyak dapat juga dipanaskan pada saat dialirkan dengan menggunakan pemanas yang mengalir. Untuk mengurangi kebutuhan steam, tangki sebaiknya diisolasi. Pemanasan dalam jumlah diperlukan jika laju aliran cukup tinggi, sehingga penggunakan pemanas yang mengalir tidak mencukupi, atau bila bahan bakar seperti LSHS digunakan. Jika digunakan pemanasan yang mengalir, hanya untuk minyak bakar, dilakukan pada saat minyak bakar keluar dari tangki sampai pada suhu pemompaan. Pemanas mengalir pada dasarnya merupakan sebuah penukar panas dengan steam atau listrik sebagai media pemanasnya.

6.2. Kontrol suhu minyak bakar
Kontrol suhu termostatis minyak bakar diperlukan untuk mencegah terjadinya pemanasan berlebihan, terutama jika aliran minyak berkurang atau berhenti. Hal ini penting untuk pemanas listrik, karena minyak dapat terkarbonisasi jika aliran sangat berkurang tetapi pemanasnya tetap hidup. Termostat harus ditempatkan pada daerah aliran minyak bakar sebelum pipa pengisapan. Suhu pemompaan minyak bakar tergantung pada jenis minyak bakar yang akan dialirkan. Minyak bakar tidak boleh disimpan pada suhu diatas yang diperlukan untuk pemompaan, karena akan menyebabkan konsumsi energi yang lebih tinggi.

6.3. Persiapan Bahan Bakar Padat
-  Penggilingan Batubara
Ukuran batubara yang benar merupakan salah satu kunci yang menjamin pembakaran yang efisien. Ukuran batubara yang tepat, sesuai dengan sistim pembakaran yang digunakan, dapat membantu pembakaran, mengurangi kehilangan abu dan efisiensi pembakaran yang lebih baik. Ukuran batubara diperkecil dengan penggilingan/crushing dan penghancuran/pulverizing. Penggilingan awal batubara ekonomis digunakan untuk unit yang lebih kecil, terutama untuk unit stoker-fired. Pada sistim handling batubara, penggilingan dilakukan untuk batubara dengan ukuran diatas 6 atau 4 mm. Peralatan yang umum digunakan untuk penggilingan adalah rotary breaker, roll crusher dan hammer mill. Sebelum penggilingan, batubara sebaiknya diayak terlebih dahulu, sehingga hanya batubara yang kelebihan ukuran yang diumpankan ke penggiling, sehingga dapat mengurangi konsumsi daya pada alat penggiling. Hal-hal praktis yang direkomendasikan pada penggilingan batubara adalah:
§ Penggunaan ayakan untuk memisahkan partikel kecil dan halus untuk menghindarkan terbentuknya partikel yang sangat halus pada penggilingan.
§ Penggunaan pemisah magnetis untuk memisahkan potongan besi dalam batubara yang dapat merusak alat penggiling.

6.4. Pengontrolan Pembakaran
Pengontrolan pembakaran membantu burner dalam mengatur pasokan bahan bakar, pasokan udara, (rasio bahan bakar terhadap udara), dan menghilangkan gas-gas pembakaran untuk mencapai efisiensi boiler yang optimum. Jumlah bahan bakar yang dipasok ke burner harus sebanding dengan tekanan dan jumlah steam yang diperlukan. Pengontrolan pembakaran juga diperlukan sebagai alat keamanan untuk menjamin bahwa boiler beroperasi dengan aman. Berbagai jenis pengontrol pembakaran yang digunakan adalah:
§ Pengontrol Hidup/Mati(On/Off): Pengontrol yang paling sederhana, kontrol ON/OFF berarti bahwa burner bekerja pada kecepatan penuh atau OFF. Jenis pengontrol ini terbatas untuk boiler kecil.
§ Pengontrol tinggi/rendah/ mati(high/low/off): Sistim TINGGI/RENDAH/MATI sedikit lebih rumit, dimana burner memiliki dua laju pembakaran. Burner dapat beroperasi pada laju pembakaran lebih lambat atau dapat dialihkan ke pembakaran penuh sesuai keperluan. Burner dapat juga kembali pada posisi pembakaran rendah pada saat beban berkurang. Pengontrol ini cocok utuk boiler berukuran sedang.
Pengontrol modulasi: Pengontrol modulasi bekerja pada prinsip untuk menyesuaikan
kebutuhan tekanan steam dengan cara mengubah laju pembakaran pada seluruh operasi boler.
Motor-motor modulasi menggunakan hubungan mekanis konvensional atau katup listrik
untuk mengatur udara primer, udara sekunder, dan bahan bakar yang dipasok ke burner.
Modulasi penuh berarti bahwa boiler sedang melakukan pembakaran, dan bahan bakar dan
udara secara hati- hati disesuaikan sesuai kebutuhan pembakaran untuk memaksimalkan
effesieni termal.

7.     DAFTAR PERIKSA OPSI
Bagian ini mencakup opsi-opsi yang sangat penting untuk memperbaiki efisiensi energi bahan bakar yang digunakan dan dalam proses pembakaran.
-         Daftar Periksa Bahan Bakar
§ Pemeriksaan harian: Suhu minyak pada burner dan kebocoran minyak/steam
§ Tugas mingguan: Pembersihan seluruh saringan dan pembuangan air dari seluruh tangki
§ Tugas tahunan: Pembersihan seluruh tangki
- Penyelesaian gangguan/ trouble shooting untuk bahan bakar
1. Minyak tidak dapat dipompa
· Viskositas terlalu tinggi
· Jalur dan saringan tersumbat
· Lumpur dalam minyak
· Kebocoran pada penghisap minyak
· Pipa ventilasi terhambat
2. Strainer tersumbat
· Lumpur atau lilin dalam minyak
· Pengendapan komponen berat dalam minyak
· Karat atau kerak dalam tangki
· Karbonsasi minyak disebabkan pemanasan yang belebihan
3. Air berlebihan dalam minyak
· Air dikirim bersamaan dengan minyak
· Manhole bocor
· Rembesan dari tangki bawah tanah
· Masuknya air dari pipa ventilasi
· Kebocoran koil steam pemanas
4. Pipa saluran tersumbat
· Lumpur dalam minyak
· Minyak dengan viskositas tinggi
· Adanya bahan asing seperti kain, kerak dan potongan kayu tipis dalam jalur
· Karbonisasi minyak
- Daftar Periksa Pembakaran
1. Start up
· Periksa ukuran burner/nosel yang tepat.
· Tentukan terlebih dahulu pasokan udara (hidupkan blower). Yakinkan tidak ada uap/gas sebelum menyalakan.
· Yakinkan nyala api dari pemantik atau sumber lain ditempatkan didepan nosel.
· Tekan ON (pemanasan awal) pasokan minyak (sebelum start-up, penutupan saluran minyak dingin).
2. Operasional
· Periksa suhu minyak pada ujung burner (sesuaikan dengan grafik viskositas vs. suhu).
· Periksa tekanan udara ntuk burner LAP (tekanan udara yang umum digunakan adalah 63,5 cm hingga 76,2 cm kolom air).
· Periksa tetesan minyak dekat burner.
· Periksa nyala api yang meredup/ denyut nyala
· Periksa posisi burner (yakinkan tidak ada nyala api yang menumbuk dinding refraktori).
· Setel panjang nyala api untuk menyesuaikan dengan kondisi yang ada (yakinkan nyala tidak memanjang melebihi tungku).
1.      Perubahan beban
· Operasikan kran udara dan minyak secara bersamaan (Untuk burner yang otomatis, operasikan pengatur otomatis. Jangan menyetel kran hanya pada aliran minyak bakar).
· Setel burner dan damper untuk asap yang berwarna coklat muda (kabur) dari cerobong dan dengan kadar CO2 nya minimal 12 persen.
4. Mematikan
· Tutup terlebih dahulu aliran minyak bakar.
· Matikan blower setelah beberapa detik (yakinkan gas- gasnya dibersihkan dari ruang pembakaran).
· Jangan biarkan nosel burner terbuka ke panas radiant dari tungku. (Jika minyak dimatikan, pindahkan burner/nosel atau tempatkan lapisan tipis tahan api antara nosel dan tungku).

0 Response to "Pembagian bahan bakar dan pembakarannya"

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel