Neraca Energi untuk Sistem Reaksi
BAB VII
NERACA ENERGI UNTUK
SISTIM REAKSI
7.1 Konsep Panas Reaksi
ΔHR = ΔHproduk - ΔHreaktan
(7.1)
ΔHR negatif, maka reaksi disebut eksotermik, dan
sebaliknya
ΔHR positif, reaksi adalah endotermik.
Perlu diketahui bahwa, panas
reaksi tidak hanya bergantung pada stoikiometri reaksi, temperatur dan tekanan,
tapi juga bergantung pada fasa reaktan dan produknya. Oleh karena itu, dalam penulisan persamaan
reaksi harus dilengkapi dengan fasa masing-masing senyawa yang terlibat dalam
reaksi. Sebagai contoh, panas reaksi untuk sistim berikut ini:

Akan
berbeda dengan sistim reaksi yang di bawah ini:

7.2
Perhitungan Panas Reaksi
Panas reaksi (ΔHR) merupakan fungsi stoikiometri, fasa komponen, temperatur
dan tekanan. Fungsi temperatur, tekanan dan fasa dapat dihilangkan dengan
menetapkan harga ΔHR pada temperatur,
tekanan dan fasa tertentu. ΔHR pada T, P
dan fasa yang lain dapat dihitung dengan mengupdate entalpi-entalpi komponen
menggunakan korelasi kapasitas panas, panas perubahan fasa, dan entalpi pada
tekanan terkoreksi. Panas reaksi untuk suatu reaksi pada temperatur To, tekanan Po, dan fasa πo:
ΔHR (To, Po , πo) =
(7.2)

dalam hal ini:
π = fasa komponen
σ = koefisien
stoikiometri
Untuk T,
P dan πS yang lain, maka:
ΔHR (T, P, π) =
(7.3)

Jika P = Po dan
semua cair, sementara πS semua uap, maka:

ΔHR (T, Po)
= ΔHR (To, Po ) +
(7.4)

Jika P ≠ Po, maka hal ini dapat
diabaikan, karena:

Contoh 7.1:
Diketahui
panas reaksi untuk reaksi berikut:
4NH3 (g) + 5O2
(g) → 4NO (g) + 6H2O (l)
pada 1 atm dan
298 K adalah -279,33 kkal/gmol. Hitung panas reaksi pada 920 oC, 1
atm dan H2O dalam fasa uap.
Penyelesaian:
Dalam persoalan
ini, P tidak berubah, temperatur dan fasa berubah.
ΔHR (920 oC,
1 atm) = ΔHR (25 oC,
1 atm) + (-4) {HNH3(920 oC,
1 atm, g)
- HNH3(25 oC,
1 atm, g)} + (-5){HO2 (920
oC, 1 atm, g)
- HO2(25 oC,
1 atm, g)} + 4 {HNO(920 oC,
1 atm, g)
- HNO(25 oC,
1 atm, g)} + 6 {HH2O(920 oC,
1atm, g)
- HH2O (25 oC,
1 atm, l)
= -279,33 kkal/gmol + (-4)

+ 

+ 

= -279,33 - 3,368 + 58,180 + 8,100
= -216,42 kkal/gmol
Panas
pembentukan: panas reaksi standar untuk reaksi pembentukan suatu komponen/senyawa dari unsur-unsurnya.
Contoh 7.2:
Hitung
panas reaksi untuk reaksi berikut:
CO
(g) + ½ O2 (g) → CO2 (g)
Jika
diketahui panas pembentukan CO (g) dan CO2 (g) menurut reaksi
berikut:
C (s) + O2 (g) → CO2
(g) 

C (s) + ½ O2 (g) → CO
(g) 

Penyelesaian:
C (s)
+ O2 (g) → CO2 (g)




½ O2(g) → CO2(g) – CO(g)

atau:
CO (g) + ½ O2(g) → CO2 (g) 

Panas pembakaran: panas
reaksi standar untuk reaksi pembakaran standar suatu komponen/senyawa.
Contoh 7.3:
Hitung panas
pembentukan CH4(g) jika diketahui panas pembakaran standarnya -191,76
kkal/ gmol.
Penyelesaian:
Reaksi
pembakaran standar untuk CH4 adalah
CH4 (g) + 2O2
(g) → CO2 (g) + 2H2O
(g)

Dari Lampiran 7 Reklaitis:



maka:

= -17,8876 kkal/gmol.
7.3 Neraca Energi untuk Reaksi Tunggal
![]() |
Gambar 7.1 Sistim dengan reaksi tunggal
Persamaan neraca energi total:

Tr = temperatur referensi.
Contoh 7.4:
Metanol pada 675
oC dan 1 bar diumpankan ke suatu reaktor adiabatik, 25% dari metanol
terdehidrogenasi menjadi formaldehid menurut reaksi:
CH3OH (g) →
HCHO (g) + H2 (g)
Hitung temperatur gas yang
meninggalkan reaktor dengan asumsi bahwa kapasitas panas untuk CH3OH,
HCHO dan H2 adalah konstan untuk interval temperatur tersebut,
masing-masing sebesar 17, 12, dan 7 kal/gmol oC.
Penyelesaian:
Basis
perhitungan 1000 mol/jam CH3OH:
![]() |
Gambar
7.2 Reaktor dehidrogenasi metanol

Oleh karena itu:



Kondisi referensi yang digunakan
adalah sama dengan kondisi masuk: temperatur 675 oC, tekanan 1 bar,
dan semua komponen berada dalam fasa gas:

Panas reaksi standar:

= -27,70 - (- 48,08) =
20,38 kkal/mol
Maka panas reaksi pada 675oC
dapat dihitung dengan:



Neraca energi total menjadi:
0 = 250 (21,68) + {(750 x 17)
+ (250 x 12) + (250 x 7)} (T – 675)

T = 675 – 309,7 = 365,3 oC
ΔHR > 0,
reaksi endotermik.
Contoh 7.5:
Gas NO
dapat dibuat dengan oksidasi parsial NH3 dengan udara. NH3
pada 25 oC dan udara panas pada 750oC direaksikan dalam
sebuah reaktor pada tekanan 1 bar. Konversi NH3 adalah 90%. Jika
produk keluar reaktor tidak boleh melebihi 920 oC, hitung laju
pengambilan panas per 1 mol umpan NH3. Asumsi perbandingan umpan O2/
NH3 adalah 2,4/1.
Penyelesaian:
Reaksi:
4NH3 (g)
+ 5O2 (g) ® 4NO (g)
+ 6H2O (g)
![]() |
Gambar
7.3 Reaktor oksidasi amoniak
Basis 1
mol/jam NH3:

Jika
ditetapkan 920 oC sebagai temperatur referensi, maka entalpi aliran
produk keluar reaktor akan hilang dari persamaan neraca energi:

Dari Contoh 7.1; 



dengan
memasukkan harga-harga yang diketahui ini dalam persamaan neraca energi:

= -22,53
kkal/jam
atau
dQ/dt = -22,53 kkal/mol NH3
Contoh 7.6:
Contoh soal
7.5 diselesaikan dengan menggunakan formula neraca entalpi total.
Penyelesaian:


Untuk aliran udara masuk:

=
13.656 + 48.060 kal/jam
Umpan NH3
masuk:

= -10.920 kal/jam
Neraca
massa aliran keluar reaktor (r = 0,225):





Sehingga
entalpi total aliran keluar reaktor:

+
+ 


= -41,6 + 25.728 +
9.085 + 60.280 – 66.980 

= 28,07 kkal/jam

7.4 Neraca Energi untuk Reaksi Kimia Jamak

Neraca energi menjadi:



Contoh 7.7:
Asam
asetat di-cracking dalam sebuah furnace untuk menghasilkan produk intermediate keten melalui reaksi:
CH3COOH (g) → CH2CO (g) + H2O (g)
Disamping
reaksi di atas, ada reaksi samping yang perlu juga diperhitungkan:
CH3COOH
(g) →
CH4 (g) + CO2
(g)
Reaksi cracking dilangsungkan pada 700 oC dengan konversi 80%
dan fraksional yield keten 0,0722.
Hitung laju pemanasan furnace
yang diperlukan untuk laju umpan asam asetat 100 kgmol/jam. Umpan masuk berada pada 300 oC.
Penyelesaian:

Gambar 7.4 Furnace cracking asam
asetat
Sistim ini adalah single input dan single output dengan melibatkan 2 reaksi kimia. Dengan memilih temperatur
referensi 700 oC, neraca energi menjadi:

Panas reaksi standar untuk reaksi
keten:

= - 14,60 – 57,80
+ 103,93 = 31,53 kkal/gmol
Panas reaksi standar untuk reaksi
metana:


= -17,89 –
94,05 + 103,93 = -8,01 kkal/gmol
Kedua panas reaksi standar di
atas harus dikoreksi ke temperatur 700 oC dengan korelasi berikut:


Dengan menggunakan persamaan Cp untuk masing – masing
komponen di atas, maka:


Entalpi asam asetat masuk furnace:

Neraca massa
asam asetat dan keten:


Karena konversi asam asetat 80%,
maka:

Dari definisi fraksional yield:
0,0722 = 

r2
= 74,224 kgmol/jam

7.5 Neraca Energi untuk Reaksi Kimia Unknown
Stoichiometry
Biasanya berlaku untuk reaksi
pembakaran bahan-bahan organik, bahan bakar fosil, dan lain-lain: Sistim ini
antara lain ditandai dengan:
1. reaktannya tidak diketahui strukturnya
dengan jelas,
2.
reaksi yang terjadi sangat kompleks.
Oleh karena itu pengembangan neraca massa komponen
tidak mungkin dilakukan, dalam beberapa kasus digunakan neraca atom.
Pembakaran bahan-bahan tersebut akan menghasilkan gross calorific value atau high
heating value (HHV).
HHV Þ panas yang
dilepaskan per unit massa bahan ketika direaksikan dengan oksigen untuk
menghasilkan solid residue (ash), liquid water, komponen- kompenen gas seperti CO2, SO2
dan N2 pada 25oC dan 1 atm (keadaan standar).
HHV bahan bakar fosil, terutama batubara atau
arang batubara (coal char) biasanya
di laporkan bersamaan dengan proksi dan elemental data.
Jika data HHV
tidak bersedia, korelasi berikut dapat digunakan untuk memprediksinya
(dikembang oleh Institute of Gas
Technology):
HHV = 14658 Wc + 56878 WH + 2940 WS – 658 Wash
– 5153 (WO + WN) (7.9)
HHV dalam Btu/lbm; WC, WH,
WS, Wash ,
Wo, dan WN adalah fraksi berat dari
masing-masing C, H, S, Ash, O dan N.
Contoh 7.8:
Suatu gasifier oksigen-kukus diumpankan dengan 106 lb/jam devolatilized char pada 1700oF.
Data analisis elemen untuk char adalah C 78%, H 0,9%, N 1,3 %, S
0,7%, Ash 19,1% dan 0 dapat diabaikan. Char
tersebut direaksikan dengan kukus yang masuk pada 1000oF dan oksigen
yang masuk pada 400oF untuk menghasilkan gas sintesis dengan
komposisi: CH4 5%, CO 26,5%, CO2 14,5%, H2
26,5% dan H2O 27,5%. Komposisi gas tersebut dalam basis bebas
H2S dan NH3. Asumsi yang ditetapkan:
1.
N dan S akan bereaksi dalam porsi yang
sama dengan C yang bereaksi → distribusi N dan S dalam gas tidak diketahui
dengan pasti,
2.
buangan char sisa tidak mengandung H dan dalam keadaan kering,
3.
gasifier
beroperasi secara adiabatik pada 70 bar dan temperatur semua aliran keluar
sama.
Salah satu
batasan yang harus ipenuhi adalah


Hitung konsumsi
O2 dan temperatur aliran keluar gasifier.
Penyelesaian:
![]() |
Gambar
7.5 Proses gasifikasi char
Untuk memudahkan
perhitungan, maka ditambahkan satu aliran baru (aliran 6) yang mengandung H2S
dan NH3 saja.
Neraca atom
untuk sistim di atas:
Sulfur : 0,007.106 =
32,06 

Nitrogen : 0,013.106 =
14,007 

Karbon : 0,78.106 =
12,01 (0,05 + 0,265 + 0,145) N5 + FC4
Hidrogen: 

Oksigen : N2 + 2N3 = [0,265 + 2(0,145) + 0,275] N5
Ash : 0,191.106
= 

Kondisi-kondisi
yang diketahui:


Neraca
S dan N2 dapat dinyatakan dalam FS4
dan FN4:


Neraca H2
dapat disederhanakan menjadi:
8,3643 . 104 = 1,28 N5 – 4,1295 . 10-3
FC4
Persamaan
ini dapat diselesaikan secara simultan
dengan neraca karbon:
N5 = 1,2649 . 105 lbmol/jam
FC4 = 8,1169 . 104 lb/jam
Dengan
demikian neraca-neraca yang lain juga dapat diselesaikan:






Dengan
menggunakan korelasi IGT, maka:


maka:

=
203,4 Btu/lb

= -320,6
Btu/lb
Entalpi umpan masuk dan buangan char:


Untuk aliran 1:


H1 = 7,5977 . 108 Btu/jam
Untuk aliran 4:

Neraca
energi total (dalam fungsi entalpi):




Dengan
memasukkan harga cp yang
dalam Lampiran 3 Reklaitis, maka:
- 6,5182 . 10-9 (T5 – 775) + 2,1448 . 10-5(T4 – 774) –
3,9079(T3 – 773)
+ 150,63 (T2 – 772) + 9,9490
. 105 (T – 77) = 1,9281.109
T =
1688,2oF
7.6 Analisis Derajat Kebebasan
7.6.1 Sistim unit tunggal
Sebagaimana dengan kasus
sistim tanpa reaksi, disini juga perlu dilakukan pemeriksaan apakah
neraca massa dapat
diselesaikan secara terpisah (decoupled)
dari neraca energi.
Contoh 7.9:
Lakukan analisa
derajat kebebasan untuk Contoh 7.7.
Penyelesaian:
Persoalan pada Contoh 7.7 melibatkan 5 komponen,
satu aliran masuk dan satu aliran keluar.
Tabel DK
Neraca
|
Neraca energi
|
|
Varibel
alur-alir
- Aliran komponen
- Laju reaksi
-
Temperature, dQ/dt
|
6
2
-
|
6
2
3
|
Neraca
independen
-
-
Energi
|
5
-
|
5
1
|
Variabel independen yang
ditetapkan
-
Laju alir
-
Konversi
-
Fraksional
yield
-
Temperatur
|
1
1
1
![]() |
1
1
1
![]() |
DK
|
0
|
1
|
Terlihat bahwa persoalan neraca massa dapat diselesaikan
secara terpisah dari neraca energi (decoupled).
7.6.2 Sistim multi unit
Untuk kasus sistim unit banyak, perlu dibuatkan table yang memuat neraca massa dan neraca gabungan (massa dan energi) untuk setiap unit proses,
dan untuk gabungan semua unit proses (secara singkat disebut proses), dan jika
cocok juga dibuat analisa untuk neraca keseluruhan (overall).
Contoh 7.10:
Amoniak
dapat diproduksi melalui reaksi berikut:
N2 + 3H2 → 2NH3
Dalam reaktor adiabatic dua tahap.
Konversi ditahap I adalah 10%, dan produk dari tahap ini didinginkan kembali ke
425%C dengan cara dicampurkan dengan umpan segar dingin. Produk dari
tahap II meninggalkan reaktor pada 535oC, pertama-tama didinginkan
dengan cara pertukaran panas dengan umpan reaktor tahap I dalam sebuah alat
penukar panas. Produk ini kemudian
direfrigrasi dalam separator untuk mengkondensasikan NH3 dengan
trace N2 dan H2. Hitung beban refrigerasi (dQ/dt) pada separator permol NH3. Asumsi kapasitas panas untuk gas NH3,
N2 dan H2 adalah konstan dan masing-masing 9,5; 7,0; dan
7 kkal/gmol oC, serta kapasitas panas NH3 cair 30,0 kkal/gmol
oC. Panas penguapan NH3 5,581 kkal/gmol pada -33,4oC
(titik didih normalnya).
Penyelesaian:
Asumsi semua
unit beroperasi secara adiabatik, kecuali separator.
![]() |
Gambar
7.6 Proses produksi amoniak
Tabel DK
Mixer
|
Reaktor 1
|
Reaktor 2
|
HE
|
Separator
|
Proses
|
Overall
|
||||||
NM
|
NG
|
NM
|
NG
|
NM
|
NG
|
NM
|
NG
|
NM
|
NG
|
|||
Jumlah variabel
|
||||||||||||
- Alur-alir
|
8
|
8
|
5
|
5
|
6
|
6
|
5
|
8
|
8
|
16
|
5
|
5
|
- Laju reaksi
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
|||||
- T, dQ/dt
|
3+1
|
2+1
|
2+1
|
4+1
|
3+1
|
13
|
2+1
|
|||||
Jumlah neraca
|
||||||||||||
-
|
3
|
3
|
3
|
3
|
3
|
3
|
3
|
3
|
12
|
3
|
3
|
|
- Energi
|
1
|
1
|
1
|
1
|
1
|
5
|
1
|
|||||
Jumlah spesifikasi
|
||||||||||||
- Komposisi
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
1
|
1
|
||
- dQ/dt
= 0
|
1
|
1
|
1
|
1
|
4
|
|||||||
- Konversi
|
1
|
1
|
1
|
|||||||||
- Temperatur
|
2
|
1
|
2
|
3
|
2
|
6
|
2
|
|||||
DK
|
4
|
4
|
1
|
1
|
4
|
3
|
4
|
4
|
5
|
1
|
2
|
2
|
NM = neraca massa , NG = neraca gabungan dan NE = neraca
energi
Dari analisis derajat kebebasan
terlihat bahwa proses terspesifikasi dengan benar, dan penyelesaian dapat
dimulai dari Reaktor 1. Dengan penetapan basis perhitungan, neraca massa dapat diselesaikan
terlebih dahulu, diikuti dengan neraca energi. Penyelesaian neraca Reaktor 1
akan menghasilkan derajad kebebasan pada mixe menjadi nol. Urutan penyelesaian secara keseluruhan
diperlihatkan pada gambar di bawah ini:

Gambar
7.7 Urutan penyelesaian proses pembuatan amoniak
Kita mulai
penyelesaian dengan memilih basis 400 mol/jam umpan Reaktor 1. Dari komposisi aliran masuk Reaktor 1, maka:



Neraca komponen:



Jika 425oC
dipilih sebagai temperature referensi, neraca energi menjadi:

Panas reaksi
pada 425oC:
ΔHR(425oC)
= -25,64 kkal/mol
Substitusi harga-harga
entalpi dan aliran dalam neraca energi:
0 = (10)(-25,64) + {20(9,5) + 90(7) +
270(7)} (Tout – 425)10-3
2,71(Tout – 425) = 256,4
Tout = 425 + 94,7 = 519,7oC
Misal laju alir umpan segar pada Mixer adalah N1 mol/jam:



Neraca energi untuk sistim tanpa
reaksi menjadi mudah jika keadaan referensi dipilih alur-alir umpan segar.






N1 = 97,8 mol/jam
Dengan
diketahuinya N1, umpan Reaktor
2 dapat dihitung:



Sama halnya
dengan Mixer, penyelesaian Reaktor 2
juga harus dilakukan secara simultan antara neraca massa dan energi:



Temperatur
referensi untuk neraca energinya adalah 425oC, maka:



r
= 14,0 mol/jam
Maka aliran masuk HE adalah:



Neraca energi pada HE diselesaikan dengan mengambil
temperature referensi 50oC.


T = 214oC
Neraca massa
untuk Separator akan
dengan mudah dapat diselesaikan:



Dengan menggunakan alur-alir 5
sebagai keadaan referensi, neraca energinya menjadi:

= 100 



- 

= 

+ 

= -867 kkal/jam
Sehingga beban
panas Separator:

0 Response to "Neraca Energi untuk Sistem Reaksi"
Post a Comment